%rav %ﬁ Jertro o

.. Sone foleac ..

W
The Zachman Framework for the reporting problem

- a first gpproach -

Qjo

Preface

Within this document an overview is given for a framework, implementing a theory of generation. It is beyond it's scope,
to design a framework in the classical manner. Instead, a loose collection of ideas is presented, that grew over a certain
period in time, with always having the 'best-possible’ generation toolkit in mind.

Subject of generation in principle can be all kind of documents. By the application of the Zachman Framework for
software architecture, the most important issues, playing a role for generator theory, will be presented and discussed a
bit.

As the idea for a theory of generation needs a simple approach for an overall method dealing with the documents to
generate, a pragmatic decision is unavoidable. The Zachman Framework is the best known principle defining such an
approach with respect to the author's knowledge.

To undermine the ideas explained here, the foxf software for report programming serves as an example, and is used to
bridge the gap from academic background information to industrial reality.

For the application of the Zachman Framework with respect to generators, the next chapter gives an overview of the
ideas behind. Last but not least, always keep Problem Frames in mind, Jackson rules.

as»ca% 0‘-"-6 o bs fracy-

. A CSe .S’ofu

Zw_ AN TVA
&j: Déz.est:ssé"m C
m@awe/msf By s ol

CMG@(PVS. all mc&sée
d(ﬂfoC @YZ Senern oz

The Zachman Framework

The Zachman framework for software architecture (abbr. ZF) helps organizing all kind of Software artefacts within a
table like structure, consisting of columns and rows and therefore building particular cells. Each cell within that
framework carries certain kinds of information with respect to some or the other formalism, meaning particular
languages, textual and/or graphical. A very broad and mostly complete overview of languages can be found in [Hay
2002].

The application of this framework as found within here is a mere demonstration towards an implementation of
Zachmans ideas using UML. The ZF rows and columns represent viewpoints and issues framing the content of a
software's collection of documents.

To avoid confusion, some remarks regarding the scope of this document have to be made. This very model just names
models, to be created for the documentation of the foxf-software, and/or names the kind of artefacts to be found for the
different rows and columns.

the main idea behind the overall model:
® get a means that helps structuring the kinds and classes of documents found within particular software
projects.

main scopes for academic purposes are the following:
e simplify the re-use of all kinds of software artefacts
e find further classifications and patterns for all those documents

To start working towards an UML Profile for ZF, simple stereotypes are established by time and in the future. The idea
behind those stereotypes as understood under the term of generation-theory is, to get a library developed for the goal of
getting some generators for development-tooling code, not to confuse by production code.

Expressed a bit more practically, the build-scripts necessary for each project are subject of generation themselves.
Further build-time software artefacts such as configuration files for metric tools like dependometer, are within the
scope of such a profile too.

It can be argued quickly, that as the UML-Profile for ZF has to care about major artefacts only. Their type-modeling
and classification is the task to do. models using that very profile could be titled ‘project configuration models'. pre-
generation of models to be developed, build-time code and others, should be a more realistic problem to solve then,
having such a profile.

On the other hand Zachman's ideas don't mean a framework under the usual term'’s definition. Just having his ideas in
mind helps controlling the expected complexity of overall generation.

Qs e?‘f \fg-.‘s, \/&.Cuﬁé;ic‘f
wusedd o Q&Sous.?m,c

o e problm o
rrogrmé Pﬁbia‘)/aé(e
H.’qvwds.

& & Ja lon a:éa. S“/M‘?é-‘
Yo 9{Q£1—na-r ‘20 Fen
gr-ﬂ-mc/eﬂ(.

O&F‘Lr M-:(,L&Ssé' a.C%'C"'nS a,qﬁ
awz-@a%-@a wow@l be
@%MB(W SCoPE &g s,
oc (44 ougl, d
Corne alfernpfive

foleas aﬂwéf/%u asagp |
/mo%/& ‘erg m%

concepts(a:thileclure)j

<< zachm an.row >>
abjectives

captures classes/groups of features implement ed within foxf, the idea behind is to find pattems
of features and/for reql&mm:ﬁts implem !medwlthlmhe software and classify them hers in

and re-used ’w‘tﬁn other projects.

the form alization of sut:h requirement- or feature- pamms is beyond the scope of this very modeal
Wfonheum.-%ﬁl& for ZF It's hard to guess if It would make sense to develop UML-models
mvresenﬁm; those features. such pattems usmﬁym pattems of natural language expressions.

whenever patterns or cuegones of faaxur:s au extm:t:ﬁ they are to be collected umm maﬁeis
belonging to the objectives package. :
for research on the issue of requirement pmem Eook In(n [Robertson 2000]

<< zachm an.ow >>
enterprise _mode|

relates items, such as models, docum ents or just organizational packages to each other with respect
to ZF-row 2. spift inmo diagram s per mlumn@bn, mw %ert& others). simple decisions like cots
used are subject of modeling on this level.

for the architecture of foxf, row 2 contains things Rké Gomaln models and descriptions, for the
problem of report programming e.g. as well as it mmamsfhe specification of cots used to create
the sclution components and/or pattems identified as usefm for the solution can be found within
that row, too.

<< zachm an.row >3>
system_m odel

<< zachm an.row »>>
technology_model

<< zachm an.row >>
Implemertation

wllec!s concepts with respect 1o ZF-row 3,

mtrl!iy dhfides the principle items for the system level of the fwffrwmm such as patterns
Izmmemrnd, and lower |evel object modeling refined from the elem ents of the enterprise model.

iaben!ag pmerm defined within row 2 are very abstract unes close to typical design patterns, those
defined within row 3 are patterns with a particular semantic.to get the idea behind it s importani to
mention, that for the emterprsie model, well-known design pattems as collected by countle ss works,
are. ﬁféci‘l'ed as such that will be the most uwom anes to help constructing the solutlon.

-anis’ b'u?lﬁ -scripts will hemodelzdnw ere.

f{n&jc\n nf concepts and models mh respect to. ZF-mw
mm&isfor the inner design of the me'w te ‘components.

hitecture of foxf, Thuech-_ oﬂ Miﬁtbmerzmuwes of the main components,
the _tore apl and the dwctopmgmimﬂsf«_ muther m&jur pti ncipte applied within generation

framing the design of each such :ncu,gtmt mthe c;sa of the reporting toolkit mainly xsl design

the ZF-rowS usually ap(utg& gmg tg‘xwai Wﬁ m exprassed in term s of viewpoints,
row 5 collects sgftwm mg!a.cts based m ms ﬁ:m description.

the colum ns what, ’hﬂw and where are :m rrmst obvious ones, scoplng artefacts In typical
pwgmmﬁ%"_ anguages or more broader, computer languages. for the latter one term s like xmi
}um‘plrto:;?ams. '

As It is hard to imagine all single anefacts from this model's pmm o wiew the oﬁyina} idea

of the framework for software architecture is extended a bit In mind, to find sim ple m odeling
conventions. the goal abways has to be, classifying the main idioms, along with finding coding- or
documenting-corwentions to be expected, oridentify them later on

this wery row|s the one belanging to the programm er, that's where he Is the expen.
an experenced programm er reuses it's knowledge at least, the more experienced he is
the better defined his pattems of code structures will be,

Fretallt mit Prcaidnn farllMl Cammiinitg Frlitinn Mirht 7o kammarziallen Motzonn

the best point to start a project-model,
leaned towards Zachman's ideas simply is
give the main-items some names. within
the model seffh, they represent nothing but
TOWS.

the names selected, rely on the one found in
[Zachman 1996]. no changes to the namings
as chosen there are made, although it's
likely to happen.

ql@e Zaccgmw ‘sz&é
ond Ef s Fo>.
aa%mj/ PM 55

o veww,

of course, major modules, better say,
standalone applications, defined as logical
assemblys within one project, could be
taken for naming as well.

but right now this idea is far away from
being expressable.

w Hen, O/ovofaas Scﬁ.ftﬂa}m Mow‘?(M o CoOmmon Sonse
%4 @a&«es 4 re?_we/mn?{s Z-aw& Yo be calécqéof ol
mzizﬂawcf o & § S:;»za‘ié‘c'— TSR "

oo 4 are sudj o RSP Pa bt ane Yroclasy Cyshms
Dol pman s, vt fmczfmlf Mi'am‘)faﬁé S(jgims a%éft’d%‘ﬂ(.
c@#}ﬁ-—r& Lele ccavall omobler f/gz O(L‘gfnffﬁbn, o:nq:&anﬂacga&m
antdl eederslon 0{0:5(%P&s oqff’sm, %«gb 2 Pne ﬁz%‘aé
pro-r. Scaralb ‘2‘6‘ Comsts Al srg W, & et -modl,
Oéaeﬁsgzus Coon aﬁé&sq{ fo-r) o b HS |

Hiosg Woaed i il #oo use o UML coulol Be odnoloof
%0‘1-92 can,iﬁ‘ém—mc/cbm 015 sucll crnsore ?a%bﬁs,‘i/oﬁ. as a
qﬁrwworév/w Comasyf i 00lol - Wyl ver, Cfma;aqé‘&n o o ol bic
as@iﬁf any whoy. & & obptous, sf&c;(u%é U Lty Ll
lpne fo‘-r He TF w el mmove e qéw: Jo srmon, Pra*}éé-
6@5@«.. onlZ %z faﬂr well boge 40&/%906&% aéw,

remarks on the different models:

for the distinction of the rows a short comparison is worth discussing. the system model is the first and most abstract
classification with respect to the solution space. as such,service functions, or broader:

service-interfaces are things to be specified within the scope of ZF-row 3, something that the system developed provides
as functionality to be used. the needs are located within the problem space, in terms of Zachman, rows 1 & 2. from the
system designers point of view it is hard to predict the kind of patterns framing solutions realized by whatever
programming language. the use of particular components-off-the-shelf (abbr. cots) frame the patterns and languages
used, too. but anyway, within a model specifying nothing but the major artefacts classified as framing the software's
architecture, typical functionality or all kinds of system-models scope the system's point of view.

more abstract again, the system model contains documents defining major components, service-implementations of
service interfaces provided by cots and principle relationships between them.

the inner design of those components are bound to the tech. mod., that itself is influenced by decisions made earlier on,
on questions of methods applied.

alternatively it can be remarked, that for the case of foxf row 3 defines low-level features to be used from developers,
row 4 constrains their implementation. keeping that in mind will help understanding that patterns of row 8 may rely on

simple design patterns, but beyond that, patterns as pattern-integrations of multiple patterns, and semantic
enrichment scopes the artefacts contained in the system model.

% Zaclnam pleod wod Fall
&ws ol Law cﬁfﬁ
C/)—LV%%CE qyaﬁqd&ou.ga-f cells
a»awadv M«vs a’qﬁfxé’(Zé.«a/;
@(f mo@wdt Wsce cells

mamcﬁ—re e annlt,

concept s(entemrise_m odel):what J

<< metamode] src, zachm an.what >>
reportlng_object_model

<< domalin >>
emiy << domalin >>
text_formatting << domaln >>
reports
+printd:void

<< zachman.what , component >>
core

<< model.src >
functionalk y_specificat ion

<< zachm anwhat | component >>
deyeloper_needs

<< modelsrt >>

bulld_servicing << model.sm >>

code_production_uni

=t T

for a sman solution for all kinddmpaﬁim pmbiam»s as required in mdl.utw
and others, a simple analysis model of the 1arm of 2 printable report
helps finding an extendable meta model for such reports.

!1:! meta model as meant In this n;r'ue}ci only extracts the main items of the
wisible mmsemwlw, r.rhemr y: Iaymd structure, of rtpan mxzmnr.s

one remark rwwﬂwn pan:mbnrtbeory
the most pop tors within the academic mndm mm generators.
realizing such inuwxsmcu& task on it's own, but it is common sensce, that they are
the mns&z{fetﬂwms o

i . _ngmor Is the easier, the better jackson Is tmdersmm for the

h Mes hem concentrating on the im portant things.

i domains fora.dcmnlmgenemur and

xﬁ-ﬂﬂn&su simﬂu’m»mui written in other programming languages like
er structure s a rather small one, as the functionality necessary and the object
rspming mmim can be k_epl stmpicfor gum‘_! npnm nquind Inthe

the ganeramﬂs abulld time component, Wsually not visible fnr or daiivaml

tothe customer,

it i5 used by the repon-developer to create custom usage of me core- mmpanem

based on asp!tﬁlﬁ:ed language designed to program sdu{om‘fcr reponing

pmblems

the reason for Introducing two components that early on and within aleve] bound tothe
problem space, simply can be argued by the fact that foxf is a developer toolkit.

as such it implem ents features of two major categories. a simple and clear spiit Into features
belonging to category out-of-the-box functionality and needs-of-developer can be made.

Erstellt mit Poseidon for UML Community Edition. Nicht zur kommerziellen Nutzung.

the enterprise model's classes of things usually are organized within what are known as domain-models. the
difficulty of understanding lies within the term of domains.

a very useful definition of the term can be found in [Jackson '96]. more concrete, his concept of problem
frames helps finding s systematic approach for organizing the artefacts of interest from the analyzers point

of view.

out-of-the box functionality means that part of the system, or say the software's architecture, the customer

looks on. beyond that the developer has to do daily work to implement reports, or any other kind of software
components. introducing components already within the problem space, simplifies clean generation of

development-process implementing code.

coole

ol

within the mtk, a toolkit embedding the
foxf or other software's developer
functionality, the concept of component
means exchangeable pieces of software.
exchangeable with respect to installation
and the like.

getting big pieces of software, that usually
are assembled by components themselves
and carry hand-crafted code beyond that,
makes it worth thinking about
standardization of build-time processing.

tools like ant provide simple scripting
means that can help solving all kind of
tasks for packaging, versioning and others,
of such components or whatever piece of
software.

the application of ZF, using UML, targets
the principle relationships between
whatever components are developed, ready-
made used ete.

right now this idea of using UML is in it's
early stages. on the other hand a real-work
proven library of ant scripts is available
already.

for the further development of this profile
along with the library itself, once
established model driven generation
approaches jump into eye as another
application for generation to care about.

o Sl - S -
el e coole o

Es pwe. So EYS ebuioxs,

Yoad &S _Sa.édic‘?z qﬁ

Sﬁrwa%

—— -

23 mosd e spproad. Lo O n o #Ze
Lse ogg M@jf Zaméwa&q#fm éfg:fp{ ﬂwqérqa-{y_ ool
e 0{0&3«‘4 9{ oo motlels, !-QSA:OZG{M&, Vo @mﬁwgm Q0lee
qféac?’, UDD(ZUAQ/@ 9/9 A (>
&ﬂ o ZM&Z Yo @aéss, of N wll Q/a é, 74 ‘#a&aﬂﬂmf /mt‘?@?@g
‘&«OZMW-MOMQ o i 05 0 Dig pescos <7/0<2€c HS“ZC{.
gac@afn Choern (/LO)IZ»\;I bod &Wﬁﬁé& C)Lﬁew onwqévncz A
Z.cuu dgﬁa e gf 4o Yo .
Yuo bac %S%ﬁ/ LPle ﬂupﬂasw?cﬁ, - (Y @ﬂ.% 0&&;, Weore
art MMMS ma@%ﬂ aﬂw@‘ca%‘ws 0{’ s’ofq&w»»e ﬂ'rzéfmm
&M@Z’%‘o—mﬂ@, ol Kl ‘{/H ﬂrrg o b Cﬂégﬂc aquymﬁém. s&x@%
,f%ﬂ% dlom L8 L Sa{W-WﬁMZ Wecs owsic . /g“ ”
Jalisg a 0&{’&_»1;.,9(aﬁ»oac«z fw Lo g‘{ L -
94""&" y Mén ‘fa-r Pr@(}&cﬂﬂb%q ~c:c9()(€. &ée:;;& f’c?é&: ?./

concept s(enterprise_m odel):the_hows J

<< integration{cots) , zachm an.how >> hightights and fél‘aaes’ h T

reponting_solutions 10 solve particular sub-prof
<< cots >> << cots >3 << cots > Kson style ﬁf‘”‘f“
fop saxon pkartaregexp | |T 7777 I:;Ik;‘_:f“&m help implementing
+processf: Object +transform {: Object '-.-

<« integration{cots) , 2achm an how >>

developm ent Jocling gned forall kinds of

the foxf framework integrates into bi g
: Ty reférred as the meta-tk

‘zoftaare developm ent Lise cazes
“fablir. mtk), highly builds onith
the refore all Kinds of ant-exts
~macro-scrpting are colls
ifles all necessary

of bigger sets of such ‘execat
nd macros for tasks such
irs library or simple test

<< cots B>
ant

<< Integration{pattem) , zachm an.how >>
executables

<< pattemn >>
command_servicing

<< zachman. how >> X S = : RN
the foxf reponting toolki makn ntatlons for the two

processing flows transformations,

<< pattern >> << |brary{scripts) »>> 1 the overall pro able representati

report ing_p ipeline generators | |T7777 i :
2. The generation of the p

of -source code scrt
& domain janguage i i 2

Erstelit mit Poseidon Tor UML Community Edition. Nicht zur kommerziellen Nutzung.

the term of cots is defined in different ways.
some works are talking about commercial
off-the-shelf, but the author's
interpretation is taken from [Afmann
2003], who calls them components-off-the-
shelf.

besides that there are works caring about
the differences between commercial and
open-source. it is just not that important for
the ZF for the time being, as discussing cots
in all their variant forms is subject work a
document on it's own.

the mtk takes the usage of cots as an inner
success guaranteeing method for code
generation. it can be argued at least, that
particular cots play one or the other role for
the build-time artefacts generated from a
ZF-UML-profile application.

M.e C@ntﬁmg azQD(f’Cc'aa qfr-‘cﬁ—n

%cwt/s-us&é»e 5 s

the reporting problem's enterprise model, aka. the foxf implementation guidelines, mainly relate items useful M > ¢€ Up ¢ @_ﬂ B3t Gc

for the solution. useful in terms of implementing the overlying system's features.

it is not important to care about the features themselves, but relating ready-made components and whenever .
possible, to highlight how they implement features as required already. at least to some extent features d“(

(44
identified as useful one's for a general solution to the reporting problem are interest of modeling. .

Co .@’ fegv ol o 04.

7 Al A0

€ 5

e ﬁozqéf‘:w.se om0l s cobime o,f bz 4. o pne closess
Jo whad g&cé’s&w_ calts a PF < predliod, Yoo oAFpron el
use.@ﬁ \Qo-r e gobedfisms o Pl Y82 08 Hiose mu'gf‘%
be wn oé{v(m—ncf Lol Wp ?340!4(901:5 G’% Selve, é’xnn(é Wm@g
Wele cods uSeC?f,fa s aﬂo&c‘za@ o a&.@ma@, ot Vo it
0 bulous Ederns Yo be Cordaie oL o %avwcpdic‘fé
,'%Qérqﬁ Hse Z—W atsqzecﬁfs,

W se Faro Everns, cods & P $bir, ropbledl as used (N
o teesform sofbvare Paciage., G Somp bl Jucts M lep
ﬁm"g%@f@ s

-

Oéqa &, ov move ,

&«Wsmﬁ }%—mébn:«.ma%, &rﬁ&wai W
2% (m— o (lesfotrc fiom af bolole Forme ambl Mo Gt
Lol in¥p | Ba ssetf 7856 7

9{ A

concept s{system_modehwhat)

<< zachm an.what , metamodel. src >> f 9
' S for the scope of the foxf system model mainlvmaamocbls or aﬂmtatlnns of
alreacly available meta models are of any interest,
<< Interface , mapping >> << Interface , mapping >> in terms of repon-creation, foxf builds upon the !W c!wiﬂl:atlorl defined by
e — fo_attribut ng the form atting objects standardan xami- !I.mum timized for the description of
= = printable reports. beyond that, foxfim pkemnx's “'s own classification,
______ to provide the developer with means and :ﬁnmmg that let him create dasses of such
Q <Cused> . 7 fo-reports quickly,
<< mode| diagram >> << Ianguage >> ftis Important to mention here, that fo o!ﬂ?:&!w the creation of one 'static'
foxf_objects xml repon-instance. there is no means to imegrate datain a really dynamic manner.
‘therefore foxf highly integrates technologies like xsl, xpath md fo inos general
7 reporting solution, taking me bes of all ufthm
for the Inner struct ure of the software, an antuiun model fi;r ¢ Iemnts prowided
hy the fo standard help um the object-model used for bu&ﬂing the fundam entals of
ftpurt creation.
foxf_xsl_synthesls sim pie classifications frame the content within the system-model's view,

aswe are ma.w within the soultion space but still away from the end-product,
all kind nfuagrw: can be subjsct of interest for the modeling of the system 's wiew.

I
|
I
I
esizachman Wiy metamodelsoe o : for the concepts provided by foxf, as something like means for developer tasks,
|
I
l
I
I
I

1
<< library >> << language >>
service_function_engine | ~ > wpath

Erstelit mit Foseidan for UML Community Eciition. Nicht zur kommerziellen Nutzung.

,fra-m Fcrsg:ecqéu& o or a@m wtqé{ Spurcer ca/rz
o@sc(@ms s, Mw % é/ te fpunid o [bbeppe o ok, 200377

O«W-‘l S v o‘z?cus Ce Gwn,
it concCll b 508, Woat fromm Ui om. pluctforn sqeodific rmaslels (it psm)
VD%&.AW%:H)—&é q/ée Yﬁw(@érdusﬂ)(s, ofbie g&"g{msgw Mraéfs%md%v]a
ﬁ&‘ﬁm aovys, 2 a.cc.wqf«-é aog_ #‘r ﬁ—g
W
Q{é@«um Cac le 9‘[]@?& ce, of toas¥ e audins &
Sﬁ’c % aw@a/gé A Concere

e vl o,{ LBusdmarnm of. ok. 4886 T onoroolecer
o dboim a%g:a.éﬁm-séss{a—ms. :d;ézn Lose, &s%ﬂf;% .
unbersHool s a Syshmahc oa %K o P
o s %(wﬁa%&uﬁ:@ Oﬁa%é

V6, /Les?ec¢ 94) ‘}{é& #ségqéfm /ﬁwaég:, Ma‘/s Et’ac%f
wha d o 1egu L. relas aﬁ’£‘¢&¢c}hs @qfvpaﬁerws,

%&K&nﬂé wil o o&eq:zrcz«éws,incfocﬂf& .ﬂrc‘%z(
G‘GM.

W ecleal o Y/ Mo - maﬁ?acﬂ% an
f:owéw %Wfdmﬁ W“@;&)Wai’) - ,%&Oéms
bile Ylad o2, well L tueolodl, Jo Zzlp 9 Cf
Broc,, - #asers Lebe $be o d’ﬂ%ﬂw} &s&%% mvé
Fa&ms rdo e #me S,

the distinetion between all the different

concepts{system_model):the_hows

scopes defined within the ZF's cells is an
issue that could raise mnever ending
discussions. to avoid confusion, system
designs are understood as that part of
software development that bridge the gap
from problem to solution space.

<< model src , zachm an.how >>
fo_creation_layer

<< pattem >
object_delegat ion << pattem >>
fo_mterfacing

within here first decisions, influencing the
software's inner design are located.
remember the comments made on the
system-model package earlier.

ystam's inner mechanisms for report-object ¢
g r say, the implementation of the report's layc
-scoped by abstract algorithm: descriptions withi
v view, g

<< model.src >> i ;
bulld_tooling_infrast ructure similar statements are valid for build-time tool

<< pattem >>
testing_pipelines

=< pattem >>
generat ion _piep line L

Erstellt mit Poseldon for UML Cammunity Edition. Nicht zur kommerziellen Nutzung.

Fe a@@&mcfcbﬂ %ﬁqsa%n sasqﬁms s«mqaﬁ q{& %s e Mceﬁsafgz s@ kse
moolels ow:/o?f yef_c Fous on ol Vo Ca- cell o Gpgq—ﬁfcuugw

o G meSa-tevel modell Uilie YL promplificackon of o BF- ol

Chess c‘a‘&cacﬁ"ms, ,&JZ@&M& AP ;aofg sﬁvm,s/ are @ omeans 40 ZQ(? M(j"""*?‘?
Hoe S48tk Sooel aCross Profeds . for profects Womselses i all
%fm‘/wfzﬁfﬁv‘n‘f fo-r 1ol - ﬁ'ﬁ s, % %‘L’%ﬁn& 5’659@»’5 é ;elacﬂg/
S {/ﬂc-@@dﬂ(@a%&ms %aéymmis okl Frodle (> wn e (s

Of Foew 3. D lo Vcow‘iﬁ.se e el m ool %//mé‘?/ﬂc - e 00l

that very model, regardless of the column
contains all kinds of artefacts capturing the
boundaries of the framework design.

as the resulting code still is one stage

concept sitechnology_modef)what /)

<< model.src >>
Toxf_objecis. styleshests.m odel

<< modelcormentions. naming) >> << mode lfcomventions.naming) > ahead, gfaphl'cal l'epl'eﬂentatiﬂﬂs most
package_conventions clas s_conventions probably are those being defined on this
view.
<< model.diagram >>
object_implementation -
remark:

to get a detailed overview of languages
useful for the different cells have a detailed
look into [Hay 2002]

<< mode| sro(collection) >
generator object_Jayer

<< model.src »>
xpath_generation_relstions hips

<< model.diagram »>>
report_service_interfacing

Erstellt mit Poseldon for UML Community Edition. Nicht 2ur kommerzielien Nutzung.

the techn.-model deals with the inner design of software within the boundaries
defined by the sys.-model. for the column of what the UML-Profile for ZF captures

design-models and -conventions.

diagrams declared on this layer are the one's with the highest importance for ‘real é
code generation, besides the designs themselves, modeling-, naming-, one fHrmay &nr S MO

documentation- or whatever kind of conventions have an aspect-like influence to
the code itself. Ce o‘f 17 ¢ @« é
f@ £C..
tools for coding conventions e.g. exist already, and usually are easy to integrate into
build tools like ant, or IDE's like eclipse. depending on their flexibility former %eﬁz 2 &é
formalization of such ruling is a subject of discussion on it's own again. g g & m M

fma?@

e wse @qe S‘Jé—x@‘%?@ ,@C#—r Sésémc aﬂfssﬁxo%ﬁ% a la. a“l-?ﬁ:’#‘@)‘,
Yoses arno s qp«ro.éém ar &Mwﬁaﬂ q>+o‘é‘@> wed ‘Z)—-r W&Qca%%
reooldling olegeril 67 W confgurationm vdablisted & o 2F- mols(
Suwell /.meoée'é‘&?) ﬁoweqlo,giw- MW/HM@(Q%%Q%
th&cf 0246 Q}raé&«m A (RS ?'/Z.P, oou s g:fw&efﬁ.#s‘i(D‘Zaéfz & o
:Z:‘i‘gr mmﬁ ; (%ﬂq{ﬂ?’ro\bﬁﬂn Delee Hss o uz-a'ctv—wmmd'ne it
Japlc oo Ay wo.
ﬁ&?ﬁﬁw a&émﬁgz’oéw@ﬂ Jo [Méé’m 20037 chotl
Jéuz(ia &e%é: o D& 9‘[/ ﬁggg(V‘;qo/c Hor Weess. %ﬂw(i()/&n awvseqﬁms
SEX Lomols @FS@MC}/HS, ad a+e S’M‘/g—-é Uite weld -Lown q:a#vﬂs
‘/o-r Coﬁé -S&Vara</&¢3. %%a(és a.gou‘:’r/d@oévm S, @M—Cw-z@moﬁs,
mEce A -cople fgbwwfmg‘ Wad all ot 'KQZ'SW@*CMQ Wc}z?o&?_
#«%mm le lltows w@au{qvww-o&ss,@(l—%& andl ‘ -8%%9/045.
¢o 829{044, 2olea a‘(f W, M@w‘%m@% e le Qodfgcs wo k. %%02%(
28 woek o « u%%ﬁ%,%&m&mﬁﬁmf&?’aé.#%ﬂ,
moo%-gnﬂm‘/wswc an &Wé @‘/ 1@4{(%&'&%1 We cosile-ou¥ (P‘Z-
A M‘/Pn% wouldl be pnou {H’ anoVbre @oamet Gite #is. 3ud
o provivk a G, b, lo 0Bout Yo role of (L ML -profis. Jesobs ald
Wad oz &5%64{5/@4% Heown bovo o &F o Ao~ gon. %M

conceptsitechnology_model)the_hows)

; : [N
=% mw":‘ / IFM‘:’: W, 22 the how-part of the foxf technolagy model captures models defining the main-algorithm s
greation: hisrarchisx that im plement the fo-object creation layer.
<< model diagram >> for the creation of the pﬂnd_-}g!e docum ent structure, better say the layout, a simple
object chss coding-pattern, so called idiom, is used for repont-document creation.
<< model.diagram >> as they are rather simple ohe's, m odels for them help enriching the documt_amian.
I lon_aigorithm P = . L
= << mode| diagram >> the creation of fo-slements in particuiar, the foxf-like objed-model in general, is done
sit Creators under the usage of patterns as well, and as they aren't too complex because of x|,

modeis for them are part of the architecture as well.

<< model.src , zachm an how »>>
bulld_zime_componerms

<< mode|src >> — — S
ant_service_interfacing ‘build-time funciions for foxf users are available by sm all components on their pwn,
therefore ft |5 obwious, to enrich the docum entation by m odeling those com ponents.

<< mode|.diagram >> :asg;emmm alqng ?ﬁi.'r_.u}n_gﬁnmbﬂnm for paramete rization, configuration ard
reporting_domai_language the -mﬁiﬁé;_aspadsim'bzé_-mcdéieﬁ, the easier creating plug- and play like piecss
| of software wiibe.

Erstellt mit Poseidon for UML Community Edition. Nicht zur kommerziellen Nutzung

the inner design of functional aspects of a software in general may be the most critical aspect for the finite goal of
smart code generation. graphical languages could be useful to create particular types of algorithms. UML-like
behavioral diagram types are one example for those kind of languages, again with respect to the mentioned work by
David Hay. althought their use is very restricted.

the most promising approach to close some gaps seems to be the Action Semantics Language part of the Executable-
UML [Mellor Balcer 2002]. just discussing that particular stuff in detail raises side-views to principles like
[GenVocal.

still a brainteaser.

ot Wonaglds o exoetublo UML.

Y 9{0 fz=
9’-—%0": m% S%V

qﬁv.«,nccjffmwg' :

59{1‘5(o oylos a@‘rwm-‘}é&%f,
pathors ledd, ot
ya &s4a+¢md P F

e Jeivrn: Gomonticsr are ;&z% wordl, sgfnoéma, ﬁucfwfa—?'/wam 2eecasin ble
e d""d(‘“’z.’ M Gus(ihnﬂ-r wands a Pkfmvmé soltuore andd uo:;/&g/

/33

_—

s Ler el &‘QK&G&% Vo aéi‘?‘éaj% 0711 ovesocll o -
%wrae#é’m. P 1eguuiremimdls e resgect o a%m"%s.
A3 mﬁr seecnpl w bare oy be e W‘?aqﬂvn
oqf 0(es46w -gu#ms ol oo, &n?:@qufaq(é’o—ns et
CMWCfs wseol .

Gfé’&,&nms Qelee ol felairtorol "%P‘”’ c%% cor. be o 1&@‘%
34%& (u—r @»CW aspec‘f.c aﬁé a 045‘&?« o+ W?M%%
a4 beas ¢ &4 o more Wan pbotsus, o Yﬁ"""""‘ﬁ W&EZES
‘forg%«.f,cﬂwwg astec{s ge@ ﬂmg’zv;nﬁgo;d »e%w}w& ZO'MM“
of cowrse g&césm o wor 6 mqf{hufg %mﬁh. G‘rﬂf)gtmj
ﬁmdu.rx&% can ase‘ff wédbn, ﬂagcarﬁa a‘f fwﬁuﬁfr
pro Bloms, ﬁ-ucf{w Sarc tiof Lok Pro e aroundl.

o 32%(oro e toloa «v% purc W‘caﬁ, {4 call &
MM'?’”"W@’ WEU pever come dywe, ook ond®

LSbitfr 193]

concept s{implem entation) what)

<< |lbrary , model.src >>
object_classes

<< pattemidiom) >>
Object_implementation

for the column of what the pattems of stylesheet structures are to be Identified and/for
modeled. asfoxf relles on a logical object model, the core library |5 leansd towards
that very model. as xsl is hot an object oriented language, coding principles heip
implementing the required oo-flke behaviour.

<< pattern(idiom) >>
Object_Configuration

<< model{conventions.docum enting) >>
documentat ion_rules

<< library , model.src >>
service_configuration

<< pattem(idiom) >>
Report_ConfigObject

T
}

I e
<< modelconventions.naming) >>
IFObject_Naming_Convent ions

the same as has been stated can be said for the build-time view of repons. each custom
report, developed using foxf, is seen as a service Impiement ation of the report-service
interface. ;

as such a repon has to be executable in some way orthe other, basic param uert:a'm
requirad to get them runin a build tool like ant. .

further ideas address pattems of interest useful to integrate repors like com ponents
into web-based software-systems, investigations into industry show quickly, that
acouple of design pattemns like the com mand-pattern e.g., are the means to care
about to realize plug- and play imegration of reports; or simllar kind of software
components,

For the goal of further generator extension, the lssue to care about Is, formalizing
the generator component towards those few patterns identified so far,

the report-configuration object integrates with the ant-service interfacing found within
the technology m odel. expressed the other way around, the im plementation of the ant
services makes usage of those objects, that can be seenas Implementations.

Erstellt mit Posaidon for UML Community Edition. Nicht zur kommerziellen Nutzung.

Eolloms ae 48055, /4 0‘5

%) éagfms Se c
va AeStion %tﬁ; Co

ok coole

44

coding- and documenting conventions are
simple means, that help organizing the
chaos. from the software architect's point of
view, means, the person organizing the
structure of artefacts to be collected within
projects, needs simple means defined, the
programmer uses when doing his work.

beyond all kind of conventions so called
idioms, patterns for source-code with
respect to concrete programming
languages(e.g. C, xsl, ...), are a popular and
effective means to further formalize the
process of software production.

to get a better idea about idioms have a
look into [Buschmann et. al. 1996] for the
architect as well as the programmer
identifying those idioms and relating them
into a simple model, will simplify
knowledge-reuse in future projects.

Sl foumd s¥ foorl o s o ’
as 0leal uwt. ou S’ﬁ)qzuccf:m/ i Fo ‘fg? S

gl {waﬁgacﬁm could Yurn pust
bomguage esed, ablrea oy 166is om Some ool of formolism.

§i as wel, \@49%; o
wer . w—:—f’%/wd Uown 0v Yoo Pt

be by vaciss sne, o wzaéféu%

&,

| concept

entation)the_hows J

algorithms

<< zachm an how , mode|.src{callaction) >>

element _creator template

<< pattem{idiom) >>

<< pattern{idiom) >>

<< pattem(ldiom) >>

stub_templates

build tim e tosling functions

<< model.sro{collection) , zachm an.how >>L

<< pattem(idiom} >>
report_lesting

<< pattern{idiom) >>
service_packaging

<< pattern{idiom} >>

stylesheet_execut ion

forthe column of how only the part of algorithm s within sources is of interest.
in terms of foxf, or broader again, with respect to the extensibie styleshest language,
particular kinds of tempistes can, and have tobe, Identified. .

practical applications have shown that as x5! is a language |eading to & huge amount of code,
simple pattems to get to small or at feast simple templates are the best means to work

with xm |-based scripting languages in gensral. sim llar words could be marked for the

use of theant bulidtool. s :

the easier the coding pattems are and the better they are modeled and qbdim'!mm-tm beter
the chancesto formalize them. - '

as foxt I 3 developar fram swork thers is something like a library of functions available

‘for typical developer use cases.

a3 stated alrendy those functions are mainly realized by m ean of jakarta-ant com ponent.

| means 1o extend it's basic functionality, asit is a very

58 ane nd framework, typical tasks fike automated testing can be done
adrassed by the mik, the developm ent toolkit the foxf developm ent tasks

. af patchable o in, change-file cre and the Jike;

ew those kind of tasks have 1o classified and/or ramed, at feast that

s on automatic bulld fie creation based on modeis like this very ane

/’710.5"# ?«1‘060(

Ersteth mit Poseidon for UML Comrmunity Edition.

. a-;ma.g"&acﬁbw axé
92(‘/;\99/_6. M«. deocécf Safm
Ao, o o Stor antl coss. o ot sé

T ,@?/:S _C’a@ YZ"M cuo-{é, {ﬂwwa

Micht zur kemmerziellen Nutzung.

Eolforn - wsa %ﬁ

e

for the implementation of functional
aspects, similar languages as for the what
items are subject of usage. although usually
only 'real' programming languages should
be expected here.

the what cell, implementing the things of
interest, classes e.g. data-describing
languages are within the scope
additionally. in general it can be stated,
that both columns can be found within one
piece of code at the same time. ZF therefore
further helps distincting between the
generation of structural and functional
aspects of source code.

MQ&M@f&me
q’)ﬂp&&(o o, %&%QM{‘%@ %@WL
of an o R gertrt Vaon - el

reponting_pipeline(execution_stub) J) - ge m¢ %
1 -on gl - F z&,e k
D .transform (ertitles)fa_instancey | : E i E W ConS§ C ¢“:’7‘? 5

S 9’”1'9’*9{ wn 8’7&4&"7
SR M s | problnteais fad
E‘_ ________ 3 ;Lce s{fo_instance):pr m_resunE i i %m’ % m‘)é Q.&H_S

f : 8 1

| |].1] wﬁw

]
< i 3 process

<< pattem > \3;] transform:saxon | |[g nstance :text _form atting [|EMJEM:.M| |p;rin3 gsuh:gng;_t;l
repori execution Drocesson | I 1 I
j

not really within the scope of a um| model collection like this one. hu as this pipeline is avery cenerous procedure i mpieﬂlemed \mhm l‘oxf
asimple model showing the overall process of report crmlnn Is worth Including here. . .

it highlights one m ore thing worth discussing 2 bit. the important method behind the dcsmn ::ffemf ixjmsnnh Problem Frame a;zpz‘bach : _
tools designed towards | deal solutions with respect to the frames they addﬂ:ss. enable mgmmm mmrlools by tmmmm nfda}rialm
Inthe real world the problems found usually are multi-frame problems. - _ o .

Cn the other hand all multi fram e problems can be assembled by basic ones. 8’:]“&1 lazthsﬂaa Oﬁmsmuk decislon 10 d!{fm%he use
of the best know normalized method for those domains subject of fntegrxtionwmn nmlﬁ Me pl’ﬁbltms

remark at this poimt in time: better read Jackson,

Erstellt mit Poseidon for UML Community Edition. Nicht zur kammerziellen Nutzung.

e DRI @1Z qlfu"s oolel loers amfﬁh Z&‘f&&ma’nscﬂaﬁg‘f& m?mrq(a«az

gqcésm o 0Ylr e . W %v@e(?gm% o mose. PTS
{aw..a{ M‘)@—» S’&f%a—ﬁe S 8¢S . n y@&[ﬁaégqﬁ}u—@g{ q‘@a »O Q2SS @qﬁ

ereadlon & cv_oéc/%,same /dv»%@f@éz‘ﬁ W H%Cﬁ ﬂmnmé ol Qéé
sxmgé s U4 Jopse Yo ore mﬁ@-}a}fw& ¥ L Fﬁfxﬁr@
MMMM mﬁﬁrm Qq:_,»ojémqéw MC‘/SM %Me

o Shidvun %mraq‘f’:'b-n %w&r wa,racﬂ&rcmqa&r Secbec ool
Loardl Yo &e% moscr/ga—mi:a&%&/é (o pen prFabiesledl, o avalloble
aﬁw@acﬁa Sa»—maéaw relodeol are uncoweYolble amil MS“QZ%P& %/
a&‘z‘ivég,_c{ 4{; _@a6 & ﬂdﬁﬁw‘af P %(? ‘;(ZM« o o cworle Pl S“&‘/ o7,
& ﬁ»@ssfﬁé. éua—w. o o %LMM« o{ Hee Za Mmoo - Fromeuwsik
‘fe-r S pr Lecfre oy rrpse fo-w.gﬁ, Oy (s ccﬂw@cfﬁe(cgguﬂm. Uews
d&s Boleas rmeons W&&wm—g bo Lupern colls, Vft:za-r m%c{ o Q(éy
/%c%fo«- reason, Yo Jo le &f as o bose 1£’of Ve collocdcon &Vl Some. Eoleas .
Becouce 0.12313 age , Colas g a e GW\ al far
Ouvo Ylm—m &iﬁpﬁ&é Coom los ﬁg% gzéwn mdi ﬁz;
afwe,[ai&.s mdw@ue. @fgwaq/ws e 05 ome WW b # ﬁ(-ﬁ{
o ol Ef, andl ¥t are g,wfsé Sorwe (easoms P vﬁnaa’mle %(m‘f,
Jéz W‘f@f&afoﬂuw Wﬁé/ms A i .@mﬁt‘ﬁzeﬂﬂﬂ, au‘?-ra.fé
C@Oé-%ﬁnﬂ_ra@n, V! 6—&?0554%‘@.

On Yo otbrs Lol o clmom Fromoworle Loas 30t co
Hre & gusk Some ol abend,

References

[ABmann 20083]
Invasive Software Composition
Uwe Amann; Springer, Berlin

[Bassett 1996]
Framing Software Reuse: Lessons from the Real World
Paul Bassett; Prentice Hall

[Buschmann et. al. 1996]
A System of Patterns. Pattern-Oriented Software Architecture
Frank Buschmann and others; John Wiley and Sons Ltd

[Kerrington 2003]
Code Generation in Action
Jack Kerrington; Manning

[Robertson 2000]
Requirements Patterns via Events-Use Cases
Suzanne Robertson

[GenVocal

[Zachman 1996]

Enterprise Architecture: The issue of the
Century

John A. Zachman; Zachman Institute for
Framework Advancement

[Jackson 1996]

Requirements and Specifications. A
Lexicon of Software Practice, Principles
and Prejudices

Michael A. Jackson; Addison-Wesley
Professional

[Jackson 2000]

Problem Frames. Analyzing and
Structuring Software Development
Problems

Michael A. Jackson; Addison-Wesley
Professional

Batory Chen Robertson Wang 2000; Design Wizards and Visual Programming Environments for GenVoca Generators

Batory Geraci 1997; Composition Validation and Subjectivity in GenVoca Generators

.. and others ..

[Hay 2002]
Requirements Analysis
David Hay; Prentice Hall

[Kleppe et. al. 2003]

MDA Explained. The Model Driven Architecture: Practice and Promise

Anneke Kleppe, Jos Warmer, Wim Bast

[Mellor Balcer 2002]

Executable UML. A Foundation for Model Driven Architecture
Stephen J. Mellor, Mare J. Balcer; Addison-Wesley Professional

[Schiffer 1997]

Visuelle Programmierung. Grundlagen und Einsatzméglichkeiten

Stefan Schiffer; Addison Wesley Verlag

/@ﬁﬁr /-ecw{ g&césﬁn.
EL done So,

1ol EF o .
wn e s¥ool L.
ﬁ%a—r\?'[@,gf O UL %&&VL

