HOCHSCHULE FÜR TECHNIK STUTTGART

PRÜFUNGSVORLEISTUNG IM SOMMER-SEMESTER 2008

FACH:	Ergänzungen zur Analysis B	NAME:	
DATUM:	16.5.2008		
ZEIT:	8:00 - 8:30	SEMESTER:	
PRÜFER:	Dr. Fischer, Dr. Erben		

HILFSMITTEL: keine keine

UNBEDINGT BEACHTEN:

- Es sind keine Hilfsmittel zugelassen.
- Auf diesem Deckblatt müssen Name und Semester eingetragen sein *bevor* Sie mit der Bearbeitung beginnen. Die zusammengehefteten Blätter dürfen nicht getrennt werden.
- Gewertet wird *nur* das (im jeweiligen Antwortkasten eingetragene) **Ergebnis**. Eventuell notwendige Korrekturen müssen eindeutig gekennzeichnet sein.
- Konzeptrechnungen dürfen *nur* auf den Aufgabenblättern (Vorder- und Rückseite) durchgeführt werden.

Aufgabe 1.

Prüfen Sie, ob die nachstehenden Zahlenreihen konvergent oder divergent sind. Geben Sie jeweils ein Kriterium an, mit welchem Sie Ihre Aussage begründen könnten.

a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k+2}}$$
 ist konvergent \square

Nachweis: Vergleichskriterium \square , Leibniz-Kriterium \square , Quotientenkriterium \square , Wurzelkriterium \square , Glieder keine Nullfolge \square .

	$\frac{\infty}{2}$ 3n		ja	nein
b)	$\sum_{n=1}^{\infty} \frac{3}{n^3}$	ist konvergent		

Nachweis: Vergleichskriterium \square , Leibniz-Kriterium \square , Quotientenkriterium \square , Wurzelkriterium \square , Glieder keine Nullfolge \square .

c) $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ ist konvergent $\prod_{n=1}^{ja} \frac{ne}{n^n}$	in	
---	----	--

Nachweis: Vergleichskriterium \square , Leibniz-Kriterium \square , Quotientenkriterium \square , Wurzelkriterium \square , Glieder keine Nullfolge \square .

d)
$$\sum_{i=1}^{\infty} \frac{2}{3i+1}$$
 ist konvergent $\prod_{i=1}^{ja} \frac{nein}{nein}$.

Nachweis: Vergleichskriterium _____, Leibniz-Kriterium _____, Quotientenkriterium _____, Wurzelkriterium _____, Glieder keine Nullfolge _____.

Aufgabe 2.

Geben Sie den Konvergenzradius R der nachstehenden Potenzreihen an.

a)
$$\sum_{k=0}^{\infty} \left(-\frac{2}{5}\right)^k x^k$$

$$R =$$

b)
$$\sum_{k=0}^{\infty} \frac{x^k}{(k+1)(k+2)}$$

$$R =$$

c)
$$\sum_{n=0}^{\infty} \frac{2x^n}{n!}$$

$$R =$$

Aufgabe 3.

Von der Potenzreihe $\sum_{k=0}^{\infty} a_k x^k$ sei bekannt, dass sie für x=-1 konvergiert und für x=2divergiert. Welche Aussagen kann man dann über ihren Konvergenzradius R machen?

Aufgabe 4.

Entwickeln Sie die angegebenen Funktionen in eine Taylorreihe um 0. Geben Sie mindestens fünf Glieder an. Die Summendarstellung ist nicht verlangt.

a)
$$xe^{-x} =$$

$$b) \quad \frac{1}{1+2x} \quad = \quad$$