Thema: Taylor-Polynome

Aufgabe 1. Berechnen Sie an den Stellen x = 0 und x = 1 die Ableitungen der Funktion

a)
$$f(x) = x^4 - 2x^3 - 13x^2 + 14x + 24$$

b)
$$g(x) = 10 - |14x - 2|$$

Warum besitzt das Schaubild der Funktion f(x) zwischen x = 0 und x = 1 einen Punkt mit waagrechter Tangente? Warum versagt die entsprechende Schlussfolgerung bei der Funktion g(x)?

Aufgabe 2. Berechnen Sie das vierte Taylor-Polynom mit Entwicklungspunkt 0 für folgende Funktionen:

$$a) \quad f(x) = \frac{1-x}{1+x}$$

$$f(x) = \ln \frac{1-x}{1+x}$$

Aufgabe 3. Berechnen Sie das dritte Taylor-Polynom der Funktion $f(x) = x^3$ mit dem Entwicklungsmittelpunkt ...

- a) -1
- b) 0
- c) 1

... und geben Sie jeweils das zugehörige Restglied an. Was fällt dabei auf? Wie kann man im vorliegenden Fall die Taylor-Polynome auch ohne Ableiten berechnen? a) Geben Sie den Definitionsbereich von f(x) an.

b) Zeigen Sie mittels vollständiger Induktion:

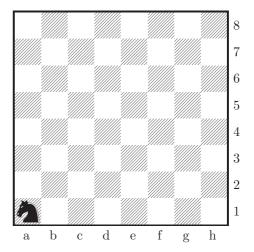
$$f^{(n)}(x) = \frac{(-1)^{(n+1)} \cdot (n-1)!}{(x+1)^n}$$

c) Geben Sie mit Hilfe des Resultats aus b) das Taylorpolynom n-ten Grades mit Entwicklungspunkt a := 0 an.

Hinweis: Die Prüfungsaufgabe enthält zwei weitere Aufgabenteile zur Integration.

Zum Knobeln

Aufgabe 5. Kann ein Springer vom Feld a1 nach h8 gelangen, wenn er dabei jedes Feld des Brettes genau einmal betritt?



Aufgabe 6. Mit blauen Lego-Steinen der Größe 4×1 und 2×2 wurde auf einer Grundplatte ein See dargestellt. Nun wird einer der 4×1 -Steine an anderer Stelle benötigt. Dafür wäre noch genau ein 2×2 -Stein verfügbar. Kann damit der gleiche See gebaut werden?

Prüfungen und Tests

Aufgabe 4. (SS07, Analysis 1)

Gegeben ist die Funktion

$$f(x) = \ln(1+x)$$